DATA WAREHOUSING AND MINING

 

PRE-REQUISITE:  Basic Programming, Mathematics-Statistics, Database Concepts

 COURSE EDUCATIONAL OBJECTIVES (CEOs):

This course will introduce the concepts, techniques, design and applications of data warehousing and data mining. Some systems for data warehousing and/or data mining will also be introduced. The course is expected to enable students to understand and implement classical algorithms in data mining and data warehousing. Students will learn how to analyze the data, identify the problems, and choose the relevant algorithms to apply. Then, they will be able to assess the strengths and weaknesses of the algorithms and analyze their behaviour on real datasets.

 COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1

Understand the concept of Data Mining, Data Warehouse and Data Marts.

CO2

Assess raw input data and apply data pre-processing techniques, generalization techniques and data characterization techniques to provide suitable input for a range of data mining algorithms.

CO3

Identify Associations in large databases using different techniques.

CO4

Differentiate various classification and clustering techniques.

C 5

Analyze how data mining techniques can be applied to complex data objects like spatial data, multimedia data and web mining.  

 COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

 

Course Code

COs

Programme Outcomes

1

2

3

4

5

 

CO1

3

2

1

 

 

CO2

3

2

 

1

 

CO3

3

2

 

1

 

CO4

1

2

2

2

 

CO5

 

2

3

3

1

1= Slight(low) 2=Moderate(Medium) 3=Substantial(High)

 


UNIT-I: Introduction

S.No.

Topics to be covered

No. of

Classes

Required

Tentative

Date of

Completion

Actual

Date of

Completion

Teaching

Learning

Methods

HOD

Sign

Weekly

1.             

Introduction to Course and COs

1

25-11-2019

 

TLM1

 

2.             

Data mining Functionalities

1

28-11-2019

 

TLM1

3.             

Classification of Data mining systems

1

29-11-2019

 

TLM1

4.             

Applications of DM

1

02-12-2019

 

TLM1

5.             

Data mining task primitives

1

05-12-2019

 

TLM1

6.             

DM – on what kind of data

1

06-12-2019

 

TLM1

7.             

Multi dimensional data model, Star, snowflake, galaxy schema

1

09-12-2019

 

TLM1

8.             

OLAP AND OLTP, OLAP OPERATIONS

Types of OLAP servers

1

12-12-2019

 

TLM1

9.             

Data warehouse Architecture

1

13-12-2019

 

TLM1

10.          

TUTORIAL-1

1

16-12-2019

 

TLM3

No. of classes required to complete UNIT-I: 10

No. of classes taken:

 

 

UNIT-II: Data Processing

S.No.

Topics to be covered

No. of

Classes

Required

Tentative

Date of

Completion

Actual

Date of

Completion

Teaching

Learning

Methods

HOD

Sign

Weekly

1.             

Introduction to data pre- processing, Data cleaning

1

19-12-2019

 

TLM1

 

2.             

Data integration

1

20-12-2019

 

TLM1

3.             

Data transformation

1

23-12-2019

 

TLM1

4.             

Data reduction, Dimensionality reduction, Numerosity reduction

2

27-12-2019

 

TLM1

5.             

Descretization and concept  hierarchy

1

30-12-2019

 

TLM1

6.             

DMQL

1

02-01-2020

 

TLM1

7.             

Data generalization and  summarization

Analysis of attribute relevance

2

06-01-2020

 

TLM1

8.             

Mining descriptive statistical measures in large data bases

1

09-01-2020

 

TLM1

9.             

TUTORIAL-2

1

10-01-2010

 

TLM3

No. of classes required to complete UNIT-II: 11

No. of classes taken:

 

 

 

 

 

UNIT-III: Association Rule Mining

S.No.

Topics to be covered

No. of

Classes

Required

Tentative

Date of

Completion

Actual

Date of

Completion

Teaching

Learning

Methods

HOD

Sign

Weekly

1.             

Association rule mining introduction

 

1

27-01-2020

 

TLM1

 

2.             

Apriori algorithm, Generating association rules, Methods to Improving apriori

2

30-01-2020

31-01-2020

 

 

TLM1

TLM2

3.             

FP growth algorithm,

Problem using fp-growth

2

03-02-2020

06-02-2020

 

TLM1

4.             

Test

1

07-02-2020

 

TLM1

5.             

Mining multi level assoc  rules

1

10-02-2020

 

TLM1

6.             

Mining multi dimensional association rules

1

13-02-2020

 

TLM1

7.             

Mining quantitative association rules

1

14-02-2020

 

TLM1

8.             

TUTORIAL-3

1

17-02-2020

 

TLM3

No. of classes required to complete UNIT-III:10

No. of classes taken:

 

 

UNIT-IV: Classification and Prediction

S.No.

Topics to be covered

No. of

Classes

Required

Tentative

Date of

Completion

Actual

Date of

Completion

Teaching

Learning

Methods

HOD

Sign

Weekly

1.             

Classification and prediction, Issues regarding classification and prediction

1

20-02-2020

 

TLM1

 

2.             

Classification by decision tree induction, Tree pruning, Extracting rules, Enhancements to decision tree induction, Scalability and DTI

3

21-02-2020

24-02-2020

27-02-2020

 

TLM1

TLM2

3.             

Bayesian classification Bayes theorem, Naive Bayesian belief networks, Training Bayesian belief networks

2

28-02-2020

02-03-2020

 

 

TLM1

TLM2

4.             

Linear regression and non linear regression

2

05-03-2020 06-03-2020

 

 

TLM1

TLM2

5.             

TUTORIAL-4

1

09-03-2020

 

TLM3

No. of classes required to complete UNIT-IV: 9

No. of classes taken:

 

UNIT-V:  Cluster analysis

S.No.

Topics to be covered

No. of

Classes

Required

Tentative

Date of

Completion

Actual

Date of

Completion

Teaching

Learning

Methods

HOD

Sign

Weekly

1.             

Cluster analysis

1

12-03-2020

 

TLM1

 

2.             

Types of data in cluster analysis

1

13-03-2020

 

TLM2

3.             

Categorization of clustering methods

1

16-03-2020

 

TLM2

4.             

Partitioning methods k-means, k-mediods, k-mediods to CLARANS, Outlier analysis

2

19-03-2020

20-03-2020

 

TLM1

5.             

Text mining

1

23-03-2020

 

TLM1

6.             

Web mining

1

26-03-2020

 

TLM1

7.             

TUTORIAL-5

1

27-03-2020

 

TLM3

No. of classes required to complete UNIT-V: 08

No. of classes taken:

UNIT-I: CLICK HERE

UNIT-II:CLICK HERE

UNIT-III:CLICK HERE

UNIT-IV:CLICK HERE

UNIT-V:CLICK HERE

Comments

Popular posts from this blog